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Abstract
In this study, we report, through molecular identification, the first African records of a digenean trematode parasite of the genus
Euryhelmis.We recovered metacercariae encysted in an anuran, the endemicMoroccan painted frog (Discoglossus scovazzi), and
a vulnerable caudate, the North African fire salamander (Salamandra algira), from four localities in North Africa (Morocco). Our
records go back to the past century and have been confirmed in successive fieldwork seasons thereafter. Metacercarial stages of
these parasites require amphibians as the last intermediate host, but the exact identity of the primary hosts and predators of the
infected animals in Africa remain unknown. Our searches with basic local alignment search tool (BLAST) from Genbank
revealed that hosts were infected by parasites of Euryhelmis costaricensis, which showed almost the same genetic identity (with
only one substitution) to previous reports fromCosta Rica and Japan, suggesting a recent introduction inMorocco.We proceed to
discuss the likely role of introduced mustelids as the potential definitive hosts of trematode adults. Under this assumption, we
conclude that the infestation of Discoglossus scovazzi and Salamandra algira might pose a risk to these threatened species.
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Introduction

Species’ increasing declines are a central topic in conservation
biology and represent a major challenge for this century
(Houlahan et al. 2000; Alford et al. 2001). According to pre-
dictive models, many species could become extinct over the
next few decades (Stuart et al. 2004; Miraldo et al. 2016).
Amphibian decline is often used as an example of the loss of
global biodiversity (Collins and Storfer 2003; Hopkins 2007).
Since the nineteenth century, populations have declined glob-
ally and amphibian extinction threats remain higher than those

of either birds or mammals (Lips et al. 2006). The extinctions
of amphibian populations throughout disparate regions are a
consequence of combined factors acting simultaneously, such
as the introduction of pathogens in natural systems, even in
protected areas (Young et al. 2001; Bosch and Martinez-
Solano 2006).

Although there are several explanations for the origin of
pathogens affecting amphibian populations (Rachowicz et al.
2005), the anthropogenic introduction of exotic species has a
crucial role in wildlife infectious diseases. Reports of emerg-
ing infectious diseases appearing in wild populations or
expanding their geographical range along, with an increase
of incidence and virulence, have become common in the last
decades (Daszak et al. 1999, 2003; Collins and Storfer 2003;
Johnson et al. 2004; de Castro and Bolker 2005; Rachowicz et
al. 2006; Sato et al. 2010). The causes for the relatively syn-
chronous emergence of amphibian diseases globally include
human-assisted introductions to previously unexposed am-
phibian populations or an alteration of pre-existing host-para-
site relationships (Pounds et al. 2006). A classical example,
the amphibian chytridiomycosis (Batrachochytrium sp.), has
been recorded worldwide causing potentially fatal epidermal
infections in amphibians (Weldon et al. 2004; McDonald et al.
2005; Skerratt et al. 2007; Duffus and Cunningham 2010).
From a recent Asian origin (O'Hanlon et al. 2018),
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Batrachochytrium dendrobatidis has resulted in extensive dis-
ease, mass mortality and extinctions in a wide variety of am-
phibian species across three orders: Anura, Urodela and
Gymnophiona, while Batrachochytrium salamandrivorans
affects exclusively Urodela (Martel et al. 2014).

The family Heterophydae Leiper, 1909 are intestinal flukes
including important human pathogens. Euryhelmis spp.
(Trematoda, Heterophyidae) are a wide-bodied trematode par-
asite with a complex lifecycle, which require at least three
hosts to complete it. Eggs released in water hatch into mira-
cidia and usually infect freshwater molluscs. The released cer-
cariae, emerging from the snails in an aquatic habitat, pene-
trate the exposed skin of second intermediate hosts and, con-
sequently, encyst in the subcutaneous connective tissue devel-
oping into metacercariae. Wild amphibian or fish harbouring
metacercarie are consumed by different predators, such as
mustelids, to become definitive hosts of the adult intestinal
parasites or flukes, facilitating the completion of the entire life
cycle (Anderson and Pratt 1965; Simon 1972; Bray et al.
2008). Finally, even humans can be infected if they were to
eat uncooked or improperly cooked fish or frog legs (Bowman
et al. 2008).

Little is known about the phylogenetic relationships in
Euryhelmis spp. The family Heterophydae Leiper, 1909 be-
long to the superfamily Opisthorchioidea Looss, 1899, which
comprise three families with similar lifecycles. On the basis to
morphological and molecular characters, the relationships
among genera and species within families remain uncertain
(Waikagul and Thaekham 2014).

Genetic data suggests that at least one species of Euryhelmis
may have been introduced from Central America to Eastern
Asia. Euryhelmis costaricensis Brenes, Arroyo, Quirós et
Jiménez, 1960 was firstly recorded from Mustela frenata
costaricensis in Costa Rica (Brenes et al. 1960). Specimens
of this parasite have also been identified in the intestine of
Japanese martens (Martes melampus) and Japanese badgers
(Meles anakuma) (Sato et al. 1999), and more recently, it was
reported in cutaneous nodular lesions and cysts of japanese
hynobiid salamanders (Hynobius lichenatus). The frequency,
severity and the distribution range of diseased salamanders
have increased massively since the year 2000, constituting a
threat for the species (Sato et al. 2010).

Herein, we collected samples of trematodes infecting the
threatened North African fire salamander (Salamandra
algira) and the Moroccan painted frog (Discoglossus
scovazzi) from four localities (Table 1) from the Rift region
in North Morocco, and we compared with another specimen
deposited in British Museum from a cave in the region of
Taza (Middle Atlas) (Fig. 1). We conduct a genetic identifi-
cation of cysts to the species level based on the closest match
through the local alignment search tool (BLAST) from
Genbank, and we report on the likely vectors and the conse-
quences of infection mode. Ta
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Material and methods

Fieldwork, sampling and identification

Newly metamorphosed specimens of Salamandra algira
were found with subcutaneous cysts (Fig. 2) throughout
several expeditions to North Morocco (between 1999 and
2015) by one of the authors (DD-B) (Fig. 3). We collect-
ed between two to five cysts per individual by excision
of tail or toeclipping for molecular analysis from three
localities (Jebel Bu Klila, Cudia Queriquera and Jebel
Kelaa) (Figs. 3 and 4). In addition, one dry carcase of
Discoglossus sp. found at Jebel Bu Klila was also col-
lected for DNA analyses. Samples (host and cyst) were
immediately preserved in 100% ethanol avoiding biolog-
ical contamination from other sites.

Molecular analysis

DNA was extracted with a Qiagen DNeasy blood and
tissue kit (Qiagen, Hilden, Germany) following the in-
structions from the manufacturer. The nuclear 18S rDNA
and the mitochondrial cytochrome b (MT-CYB) were
targeted to identify the pathogen and hosts, respectively.
The primers used were 18S rDNA C-for 5′-ATGG
CTCATTAAATCAGCTAT-3 ′ , A -Rev 5 ′ - TGCT

TTGAGCACTCAAAT TTG-3′ (Routtu et al. 2014) and
MT-CYB; L15172 5′-TGAGGACAAATATCATTCTG
AGG-3′and H15557 5′-GGCGAATAGGAARTATCATT
C-3′ (Hillis et al. 1996). Templates were sequenced on
both strands, and the complementary reads were used to
resolve rare, ambiguous base calls in Sequencher v.4.9.
Sequences were aligned in Seaview v.4.2.11 (Gouy et al.
2010) under ClustalW2 (Larkin et al. 2007) default set-
tings. Searchers with BLAST were carried out in
Genbank to identify pathogens and hosts to the species
level. All PCRs were tested with positive and negative
controls.

Results

Cysts were sequenced from Jebel Bu Klila, Cudia
Queriquera and Jebel Kelaa and hosts from Jebel Bu
Klila and Cudia Queriquera (the host sample from Jebel
Kelaa failed to amplify clean sequences and were ex-
cluded from analyses). All controls were clear for con-
tamination. PCR amplification of the hosts and subse-
quent Genbank blast searches of the fragment of MT-
CYB (circa 300 base pair) from Cudia Queriquera and
Jebel Bu klila matched Salamandra algira tingitana
(100% match), belonging to the larviparous clade of S.
a. tingitana (Donaire and Bogaerts 2016). The anuran
sequence matched Discoglossus scovazzi (99% match, 1
base pair difference), in agreement with this species’
known distribution (Vences et al. 2014). Euryhelmis
was amplified from three cyst samples of the salaman-
ders and five times per individual. The sequenced 700
base pair fraction of the 18S rDNA Genbank blast search
matched with a 99% identity to Euryhelmis costaricensis
(Genbank accessions; AB521797-800) with a difference
of one base pair. The only divergence between the 18S
rDNA gene fragments amplified from the parasite of D.
scovazzi and S. algira was an ambiguity of a C-T in the
former and a C in the latter, in one polymorphic site
(Genbank accessions, MH025805-MH025808). For all
salamander trematodes analysed, we recovered the same
haplotype.

Fig. 1 Voucher (CWP 56 3-3ª) of
Salamandra algira splendens
from Ikfou Ouan Cave, (Taza
region), 1330 m above sea level
(Morocco). Natural History
Museum London (year 1973).

Fig. 2 Infected Salamandra algira with visible cysts of Euryhelmis.
Locality: Cudia Queriquera (2013)
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Discussion

We report the first African records of the genus Euryhelmis
Poche, 1926 (Heterophyidae; Opisthorchiida). Until now, lar-
val forms of Euryhelmis sp. have been described in European
amphibians from tadpoles of Pelophylax kl. esculentus
(Walton 1949), Rana perezi (Jiménez 2003) and Rana
temporaria (Grabda-Kazubska 1980); Amolops afahanus in
Thailand (Wongsawad et al. 2004); and Lithobates
catesbeianus (Mata-Lopez et al. 2010) and several other an-
uran species in the USA (Anderson and Pratt 1965; Knutson et
al. 2002; Bowman et al. 2008).

The results herein reveal the presence of the same cysts
described in the Tohoku salamander (Hynobius lichenatus)
in post-metamorphic individuals of Salamandra algira from
Africa. All Genbank blast searchers of the pathogen sequences
matched Euryhelmis costaricensis. Pathogen sequences from
salamanders recovered the same haplotype, while that of
Discoglossus scovazzi just differed by one base pair substitu-
tion to the pathogen sequence of the salamander. However,
caution is needed to ascertain the identity of the pathogen
based to this conserved region, as other closely related
Euryhelmis sp. sequences are highly similar. For example,
nucleotide identities between the partial 5.8S-ITS2 and 28S
rDNA regions between Euryhelmis zelleri and E.
costaricensis matched 98% (Heneberg et al. 2015). The ho-
mologous fraction of the18S rDNA is not available in
Genbank at present for full genetic comparison.

Our analysis identified the presence of Euryhelmis
cysts in intermediate hosts to nearly two decades ago.
These findings suggest that this particular parasite in
Morocco is not a sporadic or localised episode but rather

Fig. 4 Photographs of localities where the infected Salamandra and
Discoglossus where found. a Cudia Queriquera (DD-B.). b Jebel Bu
Klila (photo by Wouter Beukema)

Fig. 3 Map of sampled localities inMorocco and years where metacercaria have been found. 1 Cudia Queriquera (2013), 2 Jebel BuKlila (2010), 3 Jebel
Kelaa (2015), 4 Akshur (1999), 5 Ikfou Ouan Cave (1973)
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well established throughout an extensive region. Furthermore,
a voucher from the Middle Atlas of an infected S. algira
splendens, apparently with the same cysts, seems to indicate
its presence there for over 40 years (dated from 1973, London
Natural History Museum; Fig. 1), suggesting that this genus
has likely long gone unnoticed. There are no reports of am-
phibians infected by E. costaricensis or E. zelleri in southern
Europe. Despite the inherent difficulty to collect infected am-
phibians related to the short time of cyst expression, only
present in the skin of newly metamorphosed individuals, a
molecular analysis of metacercariae of the genus Euryhelmis
is desirable. A full comparative study of helminth fauna from
the Iberian Peninsula will contribute to clarify the presence of
these species.

Potential final hosts

The predators of the infected amphibians and the primary hosts
of the trematodes in Morocco remain unknown. Yet, it is likely
that the final hosts might be introduced riparian mustelids in
North Africa. Euryhelmis adults have been reported from the
intestine of riparian mustelids in Europe, America, Asia and
New Zealand (Hoberg et al. 1990; McDonald and Lariviere
2001; Torres et al. 2008; Sato et al. 2010). In southwestern
Europe, Euryhelmis squamula (Rudolphi, 1819), which is mor-
phologically the closest species to E. costaricensis, has been
isolated in polecat (Mustela putorius L., 1758), European mink
(Mustela lutreola L., 1761), American mink (Neovison vison
Schereber, 1777), marten (Martes martes), badger (Meles
meles) and otters (Lutra lutra) (Torres et al. 2006, 2008).

The Western Palearctic polecat Mustela putorius, ranging
from the Iberian Peninsula to the Urals (Wolsan 1993), has
been recovered in Morocco’s Rif region, but the origin of the
population remains controversial (Thévenot and Aulagnier
2006). In the Iberian Peninsula, Mustela putorius plays an
essential role in the life cycle of Euryhelmis squamula, more
so than Mustela lutreola, Mustela nivalis, Meles meles or
Neovison vison (Torres et al. 2006; Bakhoum et al. 2009).
Mustela putorius, Martes foina and Lutra lutra are also host
species in Bulgaria (Yanchev 1987).

The geographical distribution of Mustela nivalis is
Holarctic, all along the northern hemisphere, throughout
Asia, America and Europe (Sheffield and King 1994) and
recently reported in North Africa. The phylogeography of
these host species include two subclades, one in western
Europe, from the Iberian Peninsula to Finland including the
British Islands, and another in eastern Europe, which also
includes Morocco and introduced populations in
Mediterranean islands (Mallorca, Menorca, Corsica,
Sardinia, Sicily and Crete) (Lebarbenchon et al. 2010).
However, despite the occasional predation on amphibian by
Mustela nivalis (Blas-Aritio 1970; Fragoso and Santos-Reis
2000), they do not constitute a major part of their diet.

Another amphibian predator, the otter (Lutra lutra)
(Clavero et al. 2003), can also be infected by Euryhelmis
squamula throughout the species’ European range (Yanchev
1987). Reports have described otters predating on amphibians
in Morocco, and the importance of amphibians in its diet has
been highlighted in southernmost European localities
(Clavero et al. 2005). All these reports are characterised by
strong variations in the type of prey, depending on seasons and
localities. Two studies refer on the diet of Lutra lutra in North
Africa: the first deals with droppings collected mainly in
Saharan rivers of the High Atlas and Middle Atlas (Broyer
et al. 1988), and the second is from Beth Wadi, a typical river
of the Middle Atlas (Morocco) (Libois et al. 2015). Fish made
up more than 70% of the catches’ relative abundance, while
the remaining preys were mainly anuran. InMorocco, anurans
from the genus Pelophylax, Hyla, Discoglossus and Bufotes
are known to be part of the otters’ diet (Clavero, pers. com.).
Although the occupied habitat is not exactly the same as that
of our study area, otter diet can include salamanders, condi-
tioned over time by climatic and anthropogenic factors.

In Japan, the infection of salamanders has increased alarm-
ingly after the introduction of the American raccoon (Procyon
lotor) (Kishimoto 2005; Shimatani et al. 2010). Although there
seems to be a correlation between the expansion of infected
salamanders with E. costaricensis metacercariae (Sato et al.
2010) and the increase population of introduced mammals at
the same areas and timing, further monitoring and identification
of parasites in feral American minks and raccoons should help
clarify this supposed relationship. In any case, it is therefore
apparent that other species not strictly described as primary
predators of Euryhelmis sp. should not be discarded a priori.

Parasite vectors and life cycle

Tadpoles and their role as vectors of metacercariae have been
the focus of numerous studies (Hamann and González 2009).
From a parasitological perspective, the study of tadpoles act-
ing as vectors is significant in two ways: (a) to assess the link
between aquatic and terrestrial ecosystems (Combes et al.
2002) and (b) to understand the effect of the pathogen
throughout the host metamorphosis, especially when larvae
are potential reservoirs (infected tadpoles can appear healthy
while post-metamorphic animals express the infection). The
fact that flukes just express after metamorphosis could be
related to the nature of the cyst structures, only visible in
keratinized tissue. According to previous reports, the infection
in metamorphic individuals of hynobiid salamanders can be
general, compromising their survival (Sato et al. 2010).
Undoubtedly, a high number of metacercarial cysts per indi-
vidual affects the intensity and prevalence of infection, as
occurs with other parasites (Schotthoefer et al. 2003;
Johnson and Lunde 2005), enhancing transmission, particu-
larly in amphibian hosts. Furthermore, the sole ingestion of a
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few infected amphibians is sufficient to cause advanced infec-
tion states in final hosts (Sato et al. 2010). On the other hand,
the infections produced by the parasites cause no clinical signs
(e.g. Felis silvestris catus orMustela putorius furo), and thus,
the definitive host becomes an asymptomatic carrier of the
disease (Bowman et al. 2008).

Despite sampling close to the distribution range of the
sublineages of viviparous salamanders, where pueriparity
seems to be exclusive (Beukema et al. 2010; Donaire and
Bogaerts 2016; Dinis and Velo-Antón 2017), the presence of
Euryhelmis sp. was only confirmed in post-metamorphic indi-
viduals of the larviparous form of S. algira tingitana. The non-
infection of viviparous salamanders, whose metamorphosed
juveniles skip the aquatic phase, could be an adaptive advan-
tage against infections. However, thorough sampling efforts
have to be made in this direction to fully assess such a hypoth-
esis. A better understanding of the natural history incidence and
geographic extent of the parasite in North Africa has pivotal
importance especially in threatened salamander species.

Conclusion

In summary, herein, we describe for the first time the presence
of Euryhelmis trematodes in African amphibians, anuran and
caudate species, in four localities of North Africa. However,
the predators of the infected amphibians in Morocco remain
unknown. If our hypothesis is confirmed and the final host is a
recent introduced carnivore (mustelidae), the infestation of
Salamandra algira could compromise the status of this threat-
ened species and become a menace to other endemic species,
at the same time that it may entail a risk to humans.
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