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Abstract
Purpose  Introduced or invasive fish are susceptible to new parasites but can simultaneously carry infectious parasites from 
their native range towards new hosts. Screening these parasites is key to address the health of fish populations and spread 
of diseases. 
Methods  In this study, we sequenced a Coccidia parasite, for the first time from the blenny Omobranchus sewalli, introduced 
in the northern coast of Brazil with an Indo-Pacific origin.
Results  Only one individual was infected, its genetic sequence matched (over 99%) with two lineages of undetermined 
species, belonging to the genus Goussia, sequenced from three marine fish species (Mulloidichthys flavolineatus, Lutjanus 
kasmira, and Selar crumenophthalmus) in Hawaii. 
Conclusions  Phylogenetic analysis suggests considerable differentiation between the Goussia detected and other Goussia 
spp. sequenced from North Atlantic marine fish, thus we cannot exclude the possibly that this parasite was carried by O. 
sewalli from its native Indo-Pacific range.

Keywords  Infection · Brazil · Omobranchus · Goussia · Fish

Introduction

Fish host a variety of Apicomplexa microparasites from two 
major groups, the Coccidia Leuckart 1897, that infect sev-
eral organs, and the Hematozoa Vivier 1982, which occur in 
host blood cells [e.g., [1, 2]]. Among the piscine Coccidia 
Leuckart, 1879, those from the genus Goussia Labbé 1896, 

are the most commonly reported in fish globally, especially 
in freshwater environments. These parasites have important 
negative effects on host fitness such as focal necrosis, mal-
absorption, and starvation [3–6]. Therefore, monitoring and 
screening for their presence is important, as they are a threat 
to wild fish and to aquaculture species [7–9]. While most 
Goussia spp. were described parasitizing freshwater fish, 
some members of the group parasitize marine and brackish 
fish and some species infect amphibians [2, 9–12]. Evidence Michael J. Jowers and Raquel Xavier have contributed equally to 

this work.

 *	 Michael J. Jowers 
	 michaeljowers@hotmail.com

1	 CIBIO/InBIO (Centro de Investigação em Biodiversidade 
e Recursos Genéticos), Universidade do Porto, Campus 
Agrario De Vairão, 4485‑661 Vairão, Portugal

2	 BIOPOLIS Program in Genomics, Biodiversity and Land 
Planning, CIBIO, Campus de Vairão, 4485‑661 Vairão, 
Portugal

3	 Departamento de Zoología, Facultad de Ciencias, 
Universidad de Granada, 18071 Granada, Spain

4	 Museo de Historia Natural La Salle, Fundación La Salle de 
Ciencias Naturales, Caracas, Venezuela

5	 Laboratório de Organismos Aquáticos, Departamento 
de Oceanografia e Limnologia, Universidade Federal 
do Maranhão, São Luís, MA, Brazil

6	 Instituto de Ciências do Mar (LABOMAR), Universidade 
Federal do Ceará (UFC), Avenida da Abolição, 
3207 Fortaleza, Brazil

7	 Núcleo de Ecologia Aquática e Pesca da Amazônia (NEAP), 
Universidade Federal do Pará (UFPA), Belém, PA, Brazil

8	 Universidad Metropolitana, Caracas 1073, Venezuela
9	 Department of Biogeographical Ecology and Evolution, 

Centro de Ciências do Mar (CCMAR), Universidade 
do Algarve, Faro, Portugal

http://orcid.org/0000-0001-8935-5913
http://crossmark.crossref.org/dialog/?doi=10.1007/s11686-023-00675-0&domain=pdf


	 Acta Parasitologica

1 3

suggests that the genus has a worldwide distribution, thus 
screening these parasites in recently established non-native 
fish populations, combined with phylogenetic analysis, can 
provide valuable insights into the possible generalist biol-
ogy of Goussia.

The muzzled blenny Omobranchus punctatus (Valenci-
ennes, 1836) poses a fascinating case of a species formally 
thought to be one of the most widely distributed blenny spe-
cies, having been introduced outside its native range through 
transport associated with ship’s ballast water and biofoul-
ing, which would favour long-distance dispersal [13–15]. 
Since it was considered a native fish of the Indo-Pacific 
region, its distribution was thought to range from the Per-
sian Gulf, in the Western Indian Ocean and the Arabian Sea, 
South-East Asia, Japan, Australia and the Fiji Islands, in 
the Western Pacific Ocean, with the species being recently 
recorded worldwide [e.g., [13, 14]]. Recently, Cabezas et al. 
[15] presented morphological and molecular data showing 
the diversity within O. punctatus. They uncovered three 
mitochondrial lineages dating to the Pleistocene, corre-
sponding to a species complex with three species, which 
were morphologically supported. One of these species, O. 
sewalli (Fowler 1931), was recognized as the invasive spe-
cies recently established in the Western Atlantic [15].

This study aimed to screen coccidian parasites from an 
introduced population of Omobranchus sewalli in the North 
of Brazil (n = 28) by Cabezas et al. [15], using genetic iden-
tification by sequencing a fragment of the 18S rRNA gene. 
This is the only gene commonly used to characterize geneti-
cally fish Apicomplexa, with 18S rRNA ‘barcode’ sequences 
representing the most comprehensive database available to 
date, encompassing lineages distributed throughout the 
globe [e.g., [16, 17]].

Materials and Methods

DNA was extracted from fins and caudal tissue previously 
stored in 96% ethanol from 28 specimens of Omobranchus 
sewalli captured from intertidal reefs at 6 localities along 
the Brazilian coast (Curuçá and Salinópolis in Pará State; 
Araçagy and São Marcos in Maranhão State; Barra Grande 
locality in Piauí State; and Jericoacora in Ceará State) [15]. 
We used the PureLink Genomic DNA Mini Kit (Invitrogen, 
Paisley, UK), and screened for the presence of fish coccidia 
using a PCR approach which has been previously shown to 
be highly sensitive to detect infections in fish [5]. Thus, a 
portion of the parasites’ 18S rRNA gene was targeted using 
the primer pairs HEP300 and HEP900 (~ 600 bp) [18]. PCR 
amplifications were performed in a 25 μl reaction volume 
consisting of 5 μl of template DNA, 10 × buffer MgCl2 free 
(Invitrogen), 1.5 mM MgCl2, 0.2 mM dNTPs, 1 μM of each 
primer, 0.4 U Platinum Taq DNA polymerase (Invitrogen), 

and double-distilled water to volume. PCR conditions were 
the following: initial denaturation of 4 min at 94 °C, fol-
lowed by 40 cycles of 45 s at 94 °C, 50 s at 60 °C and 1 min 
at 72 °C. A final extension step was performed at 72 °C for 
10 min. The resulting PCR products were purified and bidi-
rectionally sequenced at GENEWIZ (Leipzig, Germany).

The obtained sequences were edited with Sequencher 
v5.4.6 (Gene Codes Corporation, Ann Arbor, MI, USA), 
and checked for potential contaminations using GenBank’s 
BLASTn search [19]. The final dataset, consisting on one 
parasite sequence obtained in this study (accession number 
OM021887) and 16 18S rRNA sequences from their close 
relatives (selected through using the BLAST algorithm in 
GenBank), was aligned using MUSCLE [20] in MEGA X 
[21], and checked for the presence of pseudogenes by trans-
lating sequences into amino acids.

Phylogenetic relations of parasite sequences were ana-
lysed for Bayesian Inference analysis using MrBayes v3.2.6 
[22]. The best model of sequence evolution (TIM + I + G) 
was selected following the AIC using jModelTest v2.1.6 
[23] and a sequence of Cystoisospora sp. (GenBank acces-
sion number AB519675) was included as an outgroup. Four 
independent runs (each with four Markov chains for 3 × 107 
generations) were performed. Trees and parameters were 
sampled every 1,000 generations, with the heating parameter 
set to 0.25. The convergence of the analyses was validated by 
the standard deviation of split frequencies being lower than 
0.01 and by graphical monitoring of the likelihood values 
over time using Tracer v1.7.1 [24]. The majority-rule con-
sensus tree was estimated by combining results from dupli-
cated analyses, after discarding 25% of the total samples as 
burn-in. The consensus tree was visualized and rooted using 
FigTree v1.4.4 [25], and later prepared as a graphic with the 
software Inkscape v1.0.1 (http://​www.​inksc​ape.​org).

Results and Discussion

Of the 28 Brazilian fish specimens screened for the presence 
of parasites, only one individual from São Marcos, Mara-
nhão, was found infected. The results from the phylogenetic 
analysis confirmed the close relation between the parasitic 
lineage sequenced herein and species of epicelular Goussia 
sequenced from various fish, suggesting it belongs to this 
genus (Fig. 1).

Results from the BLAST search showed that the 18S 
sequence of the Goussia from O. sewalli shared 99.83% 
similarity with the sequences of Goussia sequenced from 
three fishes, Mulloidichthys flavolineatus (Lacepède, 1801), 
Lutjanus kasmira (Fabricius, 1775) and Selar crumenoph-
thalmus (Bloch, 1793) captured in Hawaii (accession num-
ber HM117907-8) [2, 26, Whipps, pers. comm.] (Fig. 1). 
Our findings suggest that the matched Goussia sp. from 

http://www.inkscape.org


Acta Parasitologica	

1 3

the Pacific Ocean (i.e., Hawaii) is widespread [2] and that 
it quite likely corresponds to a generalist species, having 
multiple unrelated hosts. According to historical and mor-
phological analyses, it seems that O. sewalli was first intro-
duced to the Western Atlantic Ocean on slave boats from the 
Bay of Bengal (Madras or, more probably, Calcutta, Indian 
Ocean) to Trinidad and Tobago, (South America), secondar-
ily spreading to Venezuela, Panama and Colombia, and then 
to different Brazilian localities [see [13, 15]]. From a geo-
graphical proximity, our finding could suggest that arrival 
to South America occurred through the Pacific, from the 
Panama Canal, as this is a heavily navigated maritime route. 
Nevertheless, as mentioned in Lasso-Alcala et al. [13], the 
Panama Canal did not open until 1914, and the first ichthyo-
faunal surveys in the Pacific coast between 1935 and 1937 
[26] followed by McCosker and Dawson [27] never found 
O. sewalli in the Pacific versant of the canal and this remains 
the case to date [28, 29].

Although the sequence of Goussia from O. sewalli from 
Brazil is not closely related with any sequence of Goussia 
species sequenced from the Atlantic Ocean, we cannot fully 
discard the hypothesis that this is in fact a widely distributed 
Goussia species, being already present in the South Atlantic 
Ocean before O. sewalli’s arrival. There are in fact piscine 
Goussia species that presumably occur both in the Pacific 
and Atlantic Ocean (e.g., Goussia cruciata (Thélohan, 1894) 

[30, 31]; Goussia clupearum (Thélohan, 1894), reviewed 
in Xavier and Saraiva [32]). Doubts remain as to whether 
Goussia species  with worldwide distributions could  be a 
species complex [e.g., [30]], since genetic analysis of many 
coccidian species has revealed the existence of multiple 
cryptic species, especially among those with wide distribu-
tions [e.g. [33]]. Although host specificity of parasite lin-
eages may be common, the lack of significant divergence 
between Goussia sp. genetic lineages found in different hosts 
would suggest that these likely represent host generalists [2].

A recent study on Goussia guamaensis [4], that para-
sitizes the ornamental freshwater fish Thoracocharax stella-
tus (Kner, 1858), captured in the basin of the Guamá River, 
municipality of Belém, northern Brazil, reported a preva-
lence of 26% and has a 92% similarity to our species, an 
endemic host species to South America [4]. Interestingly, 
phylogenetic analyses recovered its position basal to the 
sequences used in our analyses and ordination plot of the 
Principal Components Analysis (PCA) of morphometric 
data found a clear distinction between environments (marine 
vs. freshwater). The low prevalence of Goussia (2.8%) found 
in our study contrasts that of other studies [4, 5, 34], but 
likely relies on the type of tissue examined and sampling 
techniques (only muscle tissue was available to our study, 
vs. liver and spleen homogenates for example in other stud-
ies). In addition, out of the ten samples from Maranhão (five 

Fig. 1   Phylogenetic relationships between Goussia sp. from Brazil 
and other species of the genus, as inferred from sequences of par-
tial 18S rRNA gene (578 bp) analysed by BI method. The sequence 
generated in the present study (highlighted in blue). Bayesian pos-
terior probabilities (BPP) over 0.99 are represented by red circles at 
nodes. Asterisk: although there is no sequence in Genbank for Selar 

crumenophthalmus, the name is included in the tree to show all three 
fish species with close confirmed genetic identification of Gous-
sia sp. to Omobranchus sewalli. Photo credit O. M. Lasso-Alcalá. 
The sequence of Cystoisospora sp. (GenBank accession number 
AB519675) was included as an outgroup
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from São Marcos and five from Araçagy) only one specimen 
was infected (from São Marcos). The population study of 
Cabezas et al. [15] showed that O. sewalli reported three 
haplotypes from each of these two localities, suggesting that 
they are all part of the metapopulation and gene flow in 
ongoing, which could suggest much higher expected preva-
lence in the region.

Due to the harmful effect that some Goussia species have 
on their fish hosts as well as their potential wide host range 
and distribution, we suggest further studies should be per-
formed to ascertain the pathogenicity of this parasite and 
determine whether it is widespread among native fish fauna 
or weather O. sewalli maybe acting as a vector for the spread 
of Indo-Pacific parasitic lineages.
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