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ABSTRACT:

The Neotropical dipsadid snake genus Atractus contains more species than any other genus of serpents. The type species for the

genus, Three-lined Snakes (Atractus trilineatus), occurs in northern South America, as well as in the islands of Trinidad and Tobago. Little is
known about the phylogenetic position of this fossorial snake. Here, we examine the genetic variation of this species. Phylogenetic analyses suggest
that A. ¢rilineatus is an early branch within Atractus, and is deeply divergent from all of the other 31 species within the genus included in our
analyses. Populations of A. trilineatus from Trinidad and Tobago show a close genetic affinity with mainland populations from Guyana, and
indicate recent vicariance following Late Pleistocene sea-level rises. Overwater dispersal events cannot be ruled out, however, especially for the
colonization of Tobago. Our results add to the understanding of the complexity of the phylogeographic events in the eastern Caribbean with this

ecologically constrained species.
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THE NEOTROPICAL genus of fossorial snakes, Atractus
Wagler 1828 (Dipsadidae or Dipsadinae), is one of the most
successful extant snake lineages, with 143 currently recog-
nized species (Uetz et al. 2019). The genus is primarily South
American with some minor representation in Panama (Myers
2003). Besides the large number of species descriptions
(Passos and Lynch 2010; Passos et al. 2019), a comprehen-
sive revision of the genus is lacking. Furthermore, the fact
that some species are only known from the type specimens
and many others are likely misidentified makes this task
challenging. Several species of Atractus are known from just
the holotype or a small series of specimens from a restricted
range (e.g., Passos et al. 2007), fitting the description of
microendemics. Others are relatively widespread species
such as A. collaris, A. major, A. snethlageae, and A. torquatus
(Wallach et al. 2014). Among the widely distributed Atractus
species, Three-lined Snakes, Atractus trilineatus (Wagler
1828), occur in Trinidad, Tobago, northern Venezuela,
western Guyana (Beebe 1946, 1952; Murphy et al. 2018),
and Roraima, Brazil (Martins and Oliveira 1993), and have
been reported as far south as Manaus, Brazil (Martins and
Oliveira 1998). The origins of the Trinidad and Tobago
populations and their relationships with mainland popula-
tions have never been investigated. Findings from previous
phylogenetic studies on the herpetofauna of the region
(eastern Caribbean and northern South America) reflect a
pattern of colonization and diversification of species in
congruence with their ecological requirements (e.g., if they
are habitat specialists vs. habitat generalists), dispersal
capability (e.g., dependent on species morphology, such as
fossorial or semiaquatic), and the area from where the
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founder mainland populations originated (coastal or inland).
Such studies have produced contrasting findings on the
tempo and mode of speciation in such a complex topograph-
ical terrain. All three biogeographic scenarios—vicariance
(Jowers et al. 2008, 2011; Murphy et al. 2016a,b), overwater
dispersal (Camargo et al. 2009; Murphy et al. 2016a,b), and
land bridge connections (Jowers et al. 2015)—have been
proposed to explain the herpetological diversity in the
eastern Caribbean islands. In addition, recent invasions
through anthropogenic actions are likely taking place
(Camargo et al. 2009; Smith et al. 2011; Murphy et al.
2016a). Information on A. trilineatus life-history could
supply valuable information in understanding phylogeo-
graphic and phyletic patterns of diversification of the species
on the islands; yet, this information is limited.

Atractus trilineatus has a long and tortuous nomenclatural
history, with the species having been described six different
times (Coluber brachyurus Kuhl 1820; A. trilineatus Wagler,
1828; Rhabdosoma lineatum Duméril et al. 1854; Rabdosoma
trivirgatum Jan 1862; Rabdosoma punctatovittatum Jan
1862; Rhabdosoma lineatum Garman 1887 [Wallach et al.
2014]). The nomenclatural confusion has been addressed at
length by Hoogmoed (1982), and began with the use of the
Rijkis Museum specimen RMNH 48 (which is A. trilineatus)
as the type specimen for two different species: A. trilineatus
and the eastern Indonesian homalopsid, Brachyorrhos albus.
These two unrelated snakes are separated by 19,000 km, and
share a similar but superficial appearance because they live
similar life styles. Indeed, morphology-based assessments of
evolutionary relationships between Atractus lineages are
confusing because snakes are often morphologically conver-
gent as the result of similar habitat use, predators, and prey
(Erwin 2008; Losos 2010; Ricklefs 2010). Molecular
techniques have resolved many of these problems, and
provide an accurate method for estimating phylogenetic
relationships between snake lineages.
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The fossorial natural history of A. trilineatus suggests an a
priori constraint to colonize islands, especially an oceanic
island such as Tobago. Here, we test the phylogenetic and
systematic position of A. trilineatus, the type species of the
genus Atractus. Using molecular data, we assess its
placement within Atractus, estimate the age of divergence
between the islands and mainland populations, and provide
additional insight into its evolution and biogeography.

MATERIALS AND METHODS
Molecular Methods

We analyzed DNA sequence data from nine A. trilineatus
adults from the Republic of Trinidad and Tobago (Trinidad,
n = 1: University of the West Indies Zoology Museum
UWIZM.2015.18.2, St. Augustine; Tobago, n = 3,
UWIZM.2015.19.8 Roxborough; UWIZM.2015.18.6,
UWIZM.2015.19.1, UWIZM.2015.19.6 Charlotteville;
UWIZM.2011.19.11 Cambleton); and Guyana (n = 3);
California Academy of Science CAS257740 and
CAS257755 South West Guyana, Upper-Takutu—Upper
Essequibo Region, USNM566255 (Dubulay Ranch on the
Berbice River at ~200 m ASL, North East of Guyana; see
Fig. 1). Throughout, we use Guyana when referring to the
country (not restricted to the Guiana Shield).

DNA was extracted from tissue samples, and target gene
fragments were amplified by polymerase chain reaction.
DNA extraction, purification, and amplification protocols
follow Jowers et al. (2015), and primers used are reported in
Table S1 (Supplemental Materials available online). We
amplified a portion of the mitochondrial small and large
ribosomal subunits (12S rDNA, 16S rDNA, respectively),
cytochrome b (cytb) and NADH dehydrogenase 4 (nd4), and
the nuclear oocyte maturation factor (c-mos). These gene
fragments are very informative in interspecific and intraspe-
cific studies on snakes, including colubrids (e.g., Daza et al.
2009; Salvi et al. 2017, 2018). Amplification of the cytb gene
fragment was problematic for some specimens, and several
primers were used to ultimately concatenate fragments to
obtain the desired sequence length.

Templates were sequenced on both strands, and the
complementary reads were used to resolve rare, ambiguous
base-calls in Sequencher v4.9 (Gene Codes Corp., Ann
Arbor, MI). The lengths of the sequences were (although not
all individuals had the same length in some alignments): 12S
rDNA, 372 base pairs (bp); 16S rDNA, 478 bp; cytb, 1092
bp; nd4, 669 bp; c-mos; 513 bp. Following Arteaga et al.
(2017), we used Sibon nebulatus as outgroup. Sequences
were aligned in Seaview v4.2.11 (Gouy et al. 2010) under
ClustalW2 default settings (Larkin et al. 2007). The 12S and
16S rDNA, cytb, nd4, and c-mos sequences (Genbank
accession numbers provided in Table S2, in the Supplemen-
tal Materials available online) were concatenated, resulting
in a 3124-bp alignment. Genetic p-distances and standard
error (% * SE) were calculated using MEGA v6 (Tamura et
al. 2011).

We used BEAST v1.8.4 (Drummond et al. 2012) to
simultaneously estimate the phylogeny and divergence times
between Atractus species. We implemented the most
appropriate substitution model for each gene fragment as
determined by the Bayesian Information Criterion in
jModeltest v2 (Posada 2008). We applied a yule speciation

tree prior, and a relaxed clock model, using a substitution
rate of 1.34% substitutions per million yr (0.99-1.7%) for the
combined nd4 and cytb gene fragments, as estimated by
Daza et al. (2009) for Neotropical colubrids based on four
calibration points: (a) the split between Viperidae and
Colubridae, ~40 million yr ago, (Mya); (b) the divergence
between the New World and Old World Crotalinae to be
older than 16 Mya and less than 32 Mya; (c) the origin of
Sistrurus to be older than 9 Mya and less than 32 Mya; and
(d) the origin of Natricinae to be older than 30 Mya. To
implement this substitution rate, we set a lognormal prior
with mean = 0.013 and standard deviation = 0.15 on the nd4
+ cytb ucld.mean parameter (linked clock model). BEAST
was run twice with 50 million generations per run, sampling
every 5000 steps. Convergence of the runs was verified in
Tracer v1.6 (Rambaut et al. 2013), both runs were combined
in LogCombiner, and the Maximum Clade Credibility Tree
was computed using Tree Annotator (BEAST v1.8.4).

Additionally, phylogenetic analyses were performed using
the Bayesian Inference and Maximum Likelihood methods
without implementing any clock model. MrBayes v3.2
(Ronquist and Huelsenbeck 2003) was used to construct
the Bayesian Inference tree under the best-fitting substitu-
tion model for each gene partition. We used default priors
and Markov chain settings, and searches were performed
with random starting trees. Each run consisted of four chains
of 10,000,000 generations, sampled every 1000 generations.
Posterior distributions of parameter estimates were visually
inspected in Tracer ML, searches were conducted in
RAXML v7.0.4 using partition data sets under default
settings (Silvestro and Michalak 2010), and support was
assessed by using 1000 bootstrapped replicates. All phylo-
genetic analyses were performed through the CIPRES
platform (Miller et al. 2010).

In order to assess whether the branching patterns within
A. trilineatus fit intraspecific or interspecific relationships,
we used the Poisson Tree Processes (PTP) model (Zhang et
al. 2013) on the ML tree estimated on mitochondrial data
(cytb 4+ nd4). This species delimitation method outperforms
other methods based on single-locus molecular phylogenies,
especially when evolutionary distances between species are
small, as expected for the A. ¢rilineatus lineages (Zhang et al.
2013). We ran the PTP method as implemented in the PTP
web server (Zhang et al. 2013; Kapli et al. 2017).

RESuULTS
Phylogeny

The complete data set (3124 base pairs) of the sequenced
A. trilineatus resulted in nine haplotypes (one haplotype per
specimen), with the two individuals from Guyana
(CAS257740 and CAS257755) differing by only one substi-
tution in the nd4 gene fragment. The c-mos gene fragment
recovered the same haplotype for all individuals. The best-
fitting models were as follows: 12S rDNA (TIM2 + G) 16S
rDNA (TrN2 + 1+ G), cyth (TPM2uf + 1+ G), nd4 (HKY +1
4+ G), and c-mos (K80 + I). For those models that were not
implemented in BEAST, we used the most similar and
simpler model available (12S: TrN + G; cytb: HKY + 1+ G).

Genetic divergence of mitochondrial loci combined
(uncorrected p-distances) was higher between Guyana

samples (CAS257740, CAS257755 vs. USNM566255;
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Fic. 1.—Geographic distribution of sequenced Atractus trilineatus. Star symbols are sequenced samples included in this study. Specimens from
Charlotteville (Tobago) UWIZM.2015.19.6 and UWIZM.2015.19.1 are represented by one star.

2.01% = 0.00) than between these and the island
populations of Trinidad (0.89% = 0.36) and Tobago (1.0%
*+ 0.01; Table 1; Table S3 in the Supplemental Material
available online). However, genetic divergence between
Guyana samples CAS257740, CAS257755, and Trinidad
(0.52% = 0.0) and Tobago (0.65% = 0.01) was three times
lower than between USNM566255 and Trinidad (1.64% =
0.0) and Tobago (1.77% = 0.02). Genetic divergence
between Trinidad and Tobago islands (0.28 = 0.02) was
higher than the divergence recovered within Tobago (0.19 *
0.03).

All phylogenetic analyses recovered A. trilineatus as the
sister taxon to all other Atractus, which form a clade strongly
supported by Bayesian analyses (Figs. 2, 3). Overall, the
phylogenetic relationships between terminal taxa are con-
gruent with Arteaga et al. (2017). Atractus trilineatus from
Trinidad, Tobago, and Guyana form a well-resolved clade
(Bayesian Posterior Probability, BPP = 1.00; ML bootstrap
support, BS = 100%). The SW Guyana samples (CAS257740
and CAS257755) are more closely related to A. trilineatus
from Trinidad than to Tobago (Figs. 2, 3) than

USNM566255 from NE Guyana, which is sister to all other
A. trilineatus.

The timing of the most recent common ancestor between
A. trilineatus and the remaining Atractus species is estimated
at the Middle Miocene (~14 Mya; 95% Highest Posterior
Density [HPD95%] = 9.4-19.7 Mya; Fig. 3). Within A.
trilineatus, the split between samples from Trinidad and
Tobago dates to ~180,000 yr ago (HPD95% = 60,000
370,000 yr ago). The oldest split between Guyana
(USNM566255) and both Trinidad and Tobago A. trilineatus
dates to ~1 Mya (HPD95% = 0.62-1.72 Mya). The most
recent split between the mainland (Venezuela/Guyana) and
Trinidad and Tobago dates to 410,000 yr ago (HPD95% =
180,000-690,000 yr ago; Fig. 3). The PTP species delimita-
tion analysis identifies a single putative species within A.
trilineatus, because the branching patterns among A.
trilineatus sequences fit an intraspecific (coalescent) process.

DiscussioN

Our phylogenetic analyses indicate that A. trilineatus is
the sister lineage of the clade including all Atractus species
examined, although with a considerably high genetic

TaBLE 1.—Genetic distance (uncorrected p-distances, %) at concatenated mitochondrial genes between Atractus trilineatus individuals.

Locality (specimen code) Guyanal Guyana2 Guyana3 Trinidad Tobagol Tobago2 Tobago3 Tobago4 Tobago5
Guyanal (USNM566255)

Guyana2 (CAS257740) 2.01

Guyana3 (CAS257755) 2.01 0.00

Trinidad (UWIZM.2015.18.2) 1.64 0.52 0.52

Tobagol (UWIZM.2015.19.1) 1.79 0.67 0.67 0.30

Tobago2 (UWIZM.2015.19.8) 1.72 0.60 0.60 0.22 0.07

Tobago3 (UWIZM.2011.19.11) 1.79 0.67 0.67 0.30 0.30 0.22

Tobago4 (UWIZM.2015.19.6) 1.87 0.75 0.75 0.37 0.07 0.15 0.37

Tobagof‘r (UWIZM.2015.18.6) 1.72 0.60 0.60 0.22 0.22 0.15 0.07 0.30
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divergence from this clade. Atractus is a diverse genus with
143 recognized species, of which our molecular analysis
included only 31 (21.7%). Therefore, as more species are
added, the topology of the tree can be expected to change.

The distribution of A. trilineatus is likely the result of the
changing topographical conditions in the region. The
Trinidad and Tobago archipelago was connected to the
mainland multiple times with Trinidad connected to the
mainland for more prolonged periods than Tobago (Fig. S1
in the Supplemental Materials available online). The mean
age of divergence between the southwest lineage in Guyana
(CAS257740 and CAS257755) and Trinidad and Tobago,
~410 thousand yr ago (Fig. 3), indicates that the island
populations of A. trilineatus remained isolated from the
mainland during periods of higher sea-levels that were
associated with interglacial periods of the Pleistocene. Other
examples of recent divergence during the Late Pleistocene
are the Robinson’s Mouse Opossum (Marmosa robinsoni)
lineage from Venezuela-Trinidad and Tobago, dating to 0.34
Mya (Gutiérrez et al. 2014), and Trinidad’s Marisora aurulae
and Venezuela’s Peninsula de Paria M. falconensis skinks,
dating to 0.5 Mya (Hedges and Conn 2012). During these
stages, sea levels were estimated to be 10-20 m above
current levels. At this time, much of the South American
continental shelf would have been submerged, and Trinidad
and Tobago were isolated from the mainland (Routledge and
Hansen 2016). The same scenario might explain the isolation
and divergence between populations from Trinidad and
Tobago, which we estimate to have taken place circa 180
Kya, in accordance with divergence patterns for other
species between the islands (e.g., Camargo et al. 2009).

Given that Trinidad was incorporated in the continental
land during sea-level low stands as moderate as =50 m (Fig.
S1 in the Supplemental Material available online), a
vicariance model of divergence between mainland and
Trinidad is more plausible than a scenario of oversea
dispersal during interglacial periods. On the other hand,
the arrival of the species in Tobago from Trinidad through
overwater dispersal cannot be disregarded, as has been
suggested for other reptiles in Trinidad and Tobago (e.g.,
Boos 1984a,b; Camargo et al. 2009; Murphy et al. 2016a).
Land-slides following the monsoon rains in the Orinoco
Delta and throughout northern Venezuela form rafts of
vegetation that could displace a fossorial species via floating
mats of vegetation to southern Trinidad. The fact that in
Guyana A. t¢rilineatus has been found on Kaow Island
(~6°25'N, 58°37'W; datum = WGS84), at the mouth of the
Mazaruni River (NHM 1977.307), is also compatible with an
origin for overwater dispersal during flood stages. Whereas
we have no evidence that A. trilineatus spends part of its life
in the water, populations near sea level are certainly subject
to flooding. Two pieces of information in the literature
support this view: Martins and Oliveira (1993) report it from
the black-water flooded forest in Brazil, and Snyder (2016)
found a specimen in the stomach of a Red-bellied Piranha
(Pygocentrus nattereri), collected in a flooded forest. Both
observations indicate that A. trilineatus might be spending
time in shallow water. Fossorial and aquatic snakes often
share similar sets of morphological traits such as valvular
nostrils, and means (and ranges) for the number of vertebrae
(Jayne 1982; Murphy 2012).

The Guyana sample (USNM566255) shows a much
deeper divergence than between individuals from coastal
Guyana and Trinidad-Tobago, suggesting an older split,
dated at ~1 Mya. Similarly, the frog Leptodactylus validus
indicates an origin in northern South America (Guyana/
Brazil) invading Trinidad ~1 Mya, which the authors
attribute to periods of intermittent land connections, or
overwater dispersal, throughout the Pleistocene (Camargo
et al. 2009). This date also roughly (0.9 Mya) corresponds to
a split in the Robinson’s Mouse Opossum Marmosa
robinsoni that produced an eastern Venezuela-Trinidad—
Tobago clade and a central Venezuelan clade (Gutiérrez et
al. 2014). This likely resulted from habitat changes
associated with the presence of a mountain arc and the
Pleistocene expansion of humid forests into intermontane
areas that blocked gene flow from dry-habitat-adapted
species. Likewise, the divergence observed between
Trinidad and the northern Guyana coastal population of
A. trilineatus can be explained by past habitat discontinuity
by river systems between northern coastal Guyana and
Trinidad, flowing to the Guyana and Orinoco estuaries. In
contrast, the southern Guyana populations of A. trilineatus
might show less restricted population connectivity with
northern localities. Our calibration estimates for A.
trilineatus divergence reject a vicariant event between
Trinidad and northern South America in the Late Miocene
(when Trinidad detached from the Peninsula de Paria of
northern Venezuela ~3.6 Mya), and point to a divergence
in the Late Pleistocene, a time of rapid and abrupt
topographic change in the eastern Caribbean associated
with climate-related sea-level changes.

Savage (1960) proposed three species groups within
Atractus (badius, elaps, and trilineatus). Since that time, a
relatively long list of Atractus species have been placed in
the A. trilineatus group: A. collaris, A. gaigeae, A. dunni
(montane), A. ecuadorensis, A. lehmanni, A. resplendens
(Savage 1960); A. favae, A. zidoki (Hoogmoed 1980); A.
taphorni (Schargel and Garcia-Perez 2002); A. tamessari
(Kok 2006); A. dunni (lowland; Cisneros-Heredia 2005); A.
occipitoalbus (Passos et al. 2005); and A. modestus (Passos et
al. 2007). The few of these (A. dunni, A. zidoki, A.
resplendens) represented in our tree are not closely related
to A. trilineatus. Also, the topology of our tree indicates that
A. badius and A. elaps are sister clades, rendering the species
groups of Savage (1960) untenable. Martins and Oliveira
(1993) noted that the scalation and coloration of A.
trilineatus specimens from Brazil were similar to other
populations, but that these specimens had 11 maxillary teeth
as opposed to 7-8 maxillary teeth in Venezuelan specimens
reported by Lancini and Kornacker (1989). The few Trinidad
and Tobago specimens we checked had six maxillary teeth.
The Brazilian populations require further investigation.
Whereas the lowland Guyana species have been considered
taxonomically stable (Passos et al. 2013), this situation might
change once molecular data are available for most or all of
the Atractus species.
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